Freight - International Council on Clean Transportation https://theicct.org/sector/freight/ Independent research to benefit public health and mitigate climate change Thu, 27 Jun 2024 15:24:14 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.1 https://theicct.org/wp-content/uploads/2022/01/favicon-150x150.png Freight - International Council on Clean Transportation https://theicct.org/sector/freight/ 32 32  Zero-emission locomotive technologies: Pathways for U.S. rail decarbonization https://theicct.org/publication/zero-emission-locomotive-technologies-pathways-for-u-s-rail-decarbonization-jun24/ Thu, 27 Jun 2024 04:01:32 +0000 https://theicct.org/?post_type=publication&p=44051 This study explores low- and zero-emission technology pathways for decarbonizing the U.S. freight rail sector and underscores the urgency of transitioning the sector to a sustainable future.

The post  Zero-emission locomotive technologies: Pathways for U.S. rail decarbonization appeared first on International Council on Clean Transportation.

]]>
The U.S. freight rail system, the largest in the world, carries nearly 40% of the country’s long-distance freight volume by tons per mile, primarily using diesel fuel. Emissions of criteria pollutants from U.S. freight railroads have profound impacts on local air quality and public health, leading to approximately 1,000 premature deaths and $6.5 billion in health damage costs annually. Although the sector’s contribution to total U.S. transportation-related greenhouse gas emissions (GHG) is small (~2%), this share from freight rail is expected to increase as zero-emission technologies are adopted for heavy-duty trucks.

Many countries and regions outside of the United States have committed to zero-emission railways, and overhead catenary systems have become the dominant zero-emission pathway, globally. Meanwhile, catenary systems are used for less than 1% of the U.S. rail network, largely due to the private ownership of freight railroads and the associated financial burdens of installing catenary systems. Countries worldwide have started to explore other low- and zero-emission pathways as well, such as battery-electric, hydrogen fuel-cell, and diesel-hybrid battery-electric locomotives, or a combination of catenary system with these technologies.

The United States has been recently undertaken efforts at a national- and state-level to decarbonize the rail sector, such as through incorporating rail in the U.S. national blueprint for transportation decarbonization and the adoption of California’s In-Use Locomotive Regulation in 2023.

To support U.S. rail decarbonization efforts, this technical brief provides an overview of the existing and emerging low- and zero-emission propulsion technology pathways for locomotives, showcasing the global state of development and reviews the state-of-the-art economic assessment for the technologies.

Key findings from this review include:

  • Each of the major zero-emission technologies have specific challenges and opportunities. Hence, there is no single technological solution applicable for all rail networks and locomotive segments, i.e., freight, passenger-rail, and short-distance switchers.
  • Potential interim solutions for the U.S. freight rail could include the use of partial catenary systems, which combine catenary systems with batteries, fuel-cells, or diesel-hybrid powertrains.
  • The transition to zero-emission technologies could vary over the locomotive segment, considering the available technologies and relative economics, plus the extent of local air quality and related health impacts. For instance, switchers, industrial locomotives, and passenger rail segments could be prioritized for early decarbonization given that such segments operate relatively shorter distances and consume less energy than freight rail and are associated with significant local air quality impacts.
  • Large gaps exist in literature regarding data and estimates for the cost-benefit or total cost of ownership of the technologies. The available estimates indicate that adopting low- and zero-emission propulsion technologies could lead to significant fuel cost savings and health and climate benefits from reduced emissions. With further technological advancement, commercial deployment, and market maturity of the technologies, the total cost of ownership of zero-emission technologies are expected to be lower than conventional diesel powertrains in the future.

Table. Qualitative performance assessment of major zero-emission locomotive technologies  

 

The post  Zero-emission locomotive technologies: Pathways for U.S. rail decarbonization appeared first on International Council on Clean Transportation.

]]>
欧盟重型车CO2标准修订 https://theicct.org/publication/ch-revised-co2-standards-hdvs-eu-june24/ Tue, 25 Jun 2024 16:01:24 +0000 https://theicct.org/?post_type=publication&p=43831 2024年5月,欧盟重型车二氧化碳标准修订案最终通过,修订后的标准加严了针对新生产重型车设定的减排目标,要求到2040年实现减排90%,以助力欧洲到实现2050年气候中和目标。

The post 欧盟重型车CO2标准修订 appeared first on International Council on Clean Transportation.

]]>
这份政策更新简报总结了欧盟重型车CO2标准修订案的主要内容,该法规是欧洲减少重型车温室气体排放的管理基石。经过此番修订后,该标准将成为全球重型车领域最为积极严格的温室气体标准之一。

货车和客车在欧洲道路车辆中的占比仅为2%,但它们是交通领域CO2排放的第二大来源。2021年,重型车CO2排放在欧洲道路交通领域CO2排放量中的占比为28%,同年生效的《欧洲气候法案》要求欧盟到2050年实现气候中和,根据欧盟委员会的数据,交通行业需要在2050年前实现较1990年排放水平减排90%才能实现上述气候中和目标。

欧盟委员会于2023年2月14日提出了修订重型车CO2标准的提案。2024年4月10日,欧洲议会批准了三方达成一致的标准修订议案。随后,欧洲理事会于2024年5月13日正式通过了该修订案,完成了立法程序。

修订前的CO2标准要求到2025年,大多数新生产货车的排放比2019报告周期排放水平降低15%,到2030年降低30%。修订后的标准维持了到2025年CO2减排15%的目标,将2030年的减排目标提高到45%,同时引入了2035年减排65%和2040年减排90%的目标。

图2

此次修订扩大了标准法规所涵盖的车辆范围,纳入了更多类型的货车、公交客车、长途客车、挂车及专用作业车,加上此前标准适用的车型,修订后的CO2标准所涵盖的车型可占2023年重型车总销量的92%。此外,此次标准修订还对可供制造商选择的灵活性合规方案进行了一些调整。

The post 欧盟重型车CO2标准修订 appeared first on International Council on Clean Transportation.

]]>
Toward greener and more sustainable freight rail: Comparing freight rail systems and services in the United States and China https://theicct.org/publication/comparing-freight-rail-systems-and-services-in-the-us-and-china-june24/ Mon, 24 Jun 2024 15:02:28 +0000 https://theicct.org/?post_type=publication&p=42232 Examines the opportunities and challenges facing China’s freight railway in better accommodating the shipping needs of various products, based on the comparison with the freight railway in the United States.

The post Toward greener and more sustainable freight rail: Comparing freight rail systems and services in the United States and China appeared first on International Council on Clean Transportation.

]]>
China has invested in shipping structure adjustment —including road-to-railway and road-to-waterway—to address the country’s heavy reliance on road transport along with growing freight activity. This report explores the opportunities and challenges facing China’s freight railway in better accommodating the shipping needs of various products, based on the comparison with the freight railway in the United States.

This analysis of the China and U.S. freight railways focused on the managing structure, physical infrastructure, and major policy guidance of the two systems. While the network and facilities are relatively similar, notable differences exist in their managing framework. China has made substantial investments in rail infrastructure and rolling stock, resulting in a strong increase in locomotives and railcars, in addition to track length. Still, the average hauling length has decreased slightly, possibly due to an improved network resulting from the building of more railyards and stations.

As the rail system in China seeks approaches to improve its overall service and operation, and to reposition itself as the backbone of the freight system, the experiences of the United States could provide valuable insights. The upgrade of infrastructure, facilities, and equipment could be an approach to boost capacity in the rail system, including longer receiving and departure track length and heavier track axle loads. In addition, we identified that China could take proactive measures to upgrade shipping capacity and service, along with assessments of the potential use of intermodal transportation for select high-value commodities. Additional work on understanding the freight market is needed for establishing a robust foundation for research and policy formulation.

The post Toward greener and more sustainable freight rail: Comparing freight rail systems and services in the United States and China appeared first on International Council on Clean Transportation.

]]>
The revised CO2 standards for heavy-duty vehicles in the European Union https://theicct.org/publication/revised-co2-standards-hdvs-eu-may24/ Mon, 13 May 2024 14:55:44 +0000 https://theicct.org/?post_type=publication&p=42112 The revised EU CO2 standards for trucks and buses, ratified in May 2024, intensify emissions reduction targets for new vehicles, requiring a 90% decrease by 2040 to support Europe's goal of achieving climate neutrality by 2050.

The post The revised CO2 standards for heavy-duty vehicles in the European Union appeared first on International Council on Clean Transportation.

]]>
This policy update summarizes the main elements of the revised EU CO2 standards for trucks and buses, Europe’s cornerstone regulation to reduce greenhouse gas emissions from the heavy-duty vehicle sector. Globally, the legislation is one of the most ambitious greenhouse gas standards for the heavy-duty vehicle sector.

Trucks and buses comprise 2% of the vehicles on the road in Europe but are the second largest contributors to CO2 emissions in transport. In 2021, they were responsible for 28% of CO2 emissions from the European road transport sector. The European Climate Law requires the EU to achieve climate neutrality by 2050. The transport sector is obligated to reduce its emissions by 90% by 2050 relative to 1990 to comply with this target.

On February 14, 2023, the European Commission released a proposal to revise the previous CO2 standards. The legislation was approved by the European Parliament on April 10, 2024 and ratified by the Council of the European Union on May 13, 2024.

The original CO2 standards required the emissions from most new trucks to be 15% lower by 2025 and 30% lower by 2030 than the 2019 reporting period. The revised standards maintain the CO2 reduction target of 15% for 2025 and raise the 2030 target to 45% while introducing a 65% reduction target for 2035 and a 90% target for 2040.

Figure 2. Specific targets for HDVs relative to their reporting period

Heavy-duty vehicles that made up 92% of sales in 2023 are now covered under the new regulation. The revision widens the scope of covered vehicles to include more truck types, buses, coaches, trailers, and vocational vehicles and adjusts the flexibilities available to manufacturers for compliance.

Figure 1. Scope of vehicles covered under the CO2 standards and their annual sales relative to all HDVs

The post The revised CO2 standards for heavy-duty vehicles in the European Union appeared first on International Council on Clean Transportation.

]]>
零排放卡车的实际应用案例: 海南省港口牵引车和混凝土搅拌车 https://theicct.org/publication/rw-zet-port-tractor-trailers-and-concrete-mixer-trucks-in-hainan-province-china-ch-apr24/ Tue, 30 Apr 2024 16:01:30 +0000 https://theicct.org/?post_type=publication&p=41269 本报告调查了中国海南省零排放重型卡车的实际使用案例。

The post 零排放卡车的实际应用案例: 海南省港口牵引车和混凝土搅拌车 appeared first on International Council on Clean Transportation.

]]>
Read the English version.

本报告介绍了海南省换电式纯电码头偏置牵引车和换电式纯电混凝土搅拌车的实际使用案例。研究基于对实际使用场景调研,评估了纯电重卡在海南省的实际应用情况和经济效益。我们的研究结果表明,使用纯电重卡,尤其是使用电池即服务(BaaS)模式购买的换电重卡,能够比传统的柴油和液化天然气(LNG)卡车节省大量的成本。

报告还强调了海南引领新能源汽车发展(NEV)的雄心,并建议海南可以进一步制定明确的重型货车新能源销售目标。更具体地说,海南可以考虑在码头短倒运输和混凝土运输等特定使用场景中的重型货车设定100%电动化的目标。

The post 零排放卡车的实际应用案例: 海南省港口牵引车和混凝土搅拌车 appeared first on International Council on Clean Transportation.

]]>
ICCT’s public comments in support of the approval of California’s in-use locomotive regulation https://theicct.org/iccts-public-comments-in-support-of-the-approval-of-californias-in-use-locomotive-regulation-apr24/ Tue, 23 Apr 2024 13:35:19 +0000 https://theicct.org/?p=41552  

The post ICCT’s public comments in support of the approval of California’s in-use locomotive regulation appeared first on International Council on Clean Transportation.

]]>

 

The post ICCT’s public comments in support of the approval of California’s in-use locomotive regulation appeared first on International Council on Clean Transportation.

]]>
Real-world use cases for zero-emission trucks: Port tractor-trailers and concrete mixer trucks in Hainan province, China https://theicct.org/publication/rw-zet-port-tractor-trailers-and-concrete-mixer-trucks-in-hainan-province-china-apr24/ Wed, 17 Apr 2024 14:52:39 +0000 https://theicct.org/?post_type=publication&p=38583 Investigates the real-world use cases of zero-emission heavy-duty trucks in Hainan province, China.

The post Real-world use cases for zero-emission trucks: Port tractor-trailers and concrete mixer trucks in Hainan province, China appeared first on International Council on Clean Transportation.

]]>
阅读中文版。

The paper presented real-world use cases of swap-capable battery electric tractor-trailers at the Port of Yangpu and concrete mixer trucks at cement plants in Hainan province. This study examines the economic benefits of using battery electric heavy-duty trucks based on first-hand empirical data on real-world operations. Our findings revealed that battery electric trucks—especially those purchased under the battery-as-a-service (BaaS) model—offer significant savings over traditional diesel and liquified natural gas (LNG) trucks.

The paper also highlights Hainan’s ambition to lead in new energy vehicle (NEV) adoption and suggests Hainan could further develop clear NEV sales targets for heavy-duty trucks (HDTs). More specifically, Hainan could consider setting 100% NEV targets for HDTs in certain use cases like in-port tractor-trailers and concrete mixer trucks.

The post Real-world use cases for zero-emission trucks: Port tractor-trailers and concrete mixer trucks in Hainan province, China appeared first on International Council on Clean Transportation.

]]>
Assessing the role of biomass-based diesel in U.S. rail decarbonization strategy https://theicct.org/publication/assessing-the-role-of-biomass-based-diesel-in-us-rail-decarbonization-strategy-april24/ Fri, 29 Mar 2024 14:59:45 +0000 https://theicct.org/?post_type=publication&p=39908 Although the DOE’s National Blueprint for Transport Decarbonization identifies liquid biofuels as a long-term decarbonization strategy for rail, long-haul trucks, aviation, and marine, the sustainable supply of biomass feedstocks is limited and might not be enough to meet projected demand across multiple transport modes.

The post Assessing the role of biomass-based diesel in U.S. rail decarbonization strategy appeared first on International Council on Clean Transportation.

]]>
In the National Blueprint for Transport Decarbonization, the U.S. Department of Energy (DOE) identified liquid biofuels as a long-term decarbonization strategy for rail, long-haul trucks, and the maritime and aviation sectors. Because liquid biofuels are compatible with existing diesel engines and infrastructure, they can be easily adopted in the near term to work toward decarbonizing the U.S. rail sector, which is presently only 1% electrified.

This brief draws upon various studies by the ICCT to consider the availability of biomass-based diesel (BBD) in the U.S., and its greenhouse gas (GHG) emissions and broader sustainability impacts that could result if the U.S. rail sector transitions to BBD fuel. The author estimates there are 421 million tonnes in the United States in 2030, which could be converted into 19.0 billion gallons of BBD for use in the rail sector.

The DOE estimated that domestic biomass resources could provide approximately 53 billion DGE of fuel in 2030 and beyond. This is larger than the ICCT’s estimate because it includes high-risk feedstocks, downward adjustments of expected yields for energy crops to reflect real-world production, and pathways not expected to be commercially viable for rail applications.

Both ICCT and DOE’s projections for sustainable biomass availability fall short of the combined projected fuel demand for the maritime, aviation, rail, and off-road sectors in 2050. To conserve limited BBD resources for sectors such as aviation and maritime shipping, other technology options—including catenary systems, electric batteries, and hydrogen fuel cells—can be used to decarbonize rail. These will require substantial funding and investment in new infrastructure. In the near term, as the infrastructure is being built out, rail operators could switch to hybrid diesel-battery-electric systems that comply with EPA’s Tier 4 emission standards. California’s In-Use Locomotive Regulation, adopted last year, contains several strategies that could be a model for other states and the federal government. U.S. rail decarbonization strategies could also capitalize on funding streams made available in the 2022 Inflation Reduction Act (IRA) and 2021 Infrastructure Investment and Jobs Act (IIJA).

The post Assessing the role of biomass-based diesel in U.S. rail decarbonization strategy appeared first on International Council on Clean Transportation.

]]>
Electrifying all U.S. trucks is not just feasible—it’ll cost less than some might have you think https://theicct.org/electrifying-all-us-trucks-is-not-just-feasible-itll-cost-less-than-you-may-think-mar24/ Thu, 28 Mar 2024 16:52:09 +0000 https://theicct.org/?p=40086 Explores recent estimates for electrifying the U.S. truck fleet, finding that it is both feasible and affordable, in contrast to the Clean Freight Coalition's inflated $1 trillion projection.

The post Electrifying all U.S. trucks is not just feasible—it’ll cost less than some might have you think appeared first on International Council on Clean Transportation.

]]>

Last week, the Clean Freight Coalition (CFC), a group that includes truck dealers, freight carriers, and others in the U.S. trucking industry, dropped an attention-grabbing report suggesting that $1 trillion of investment in charging infrastructure would be needed to electrify 100% of the nation’s truck fleet. But as I’ll explain here, serious shortcomings in the analysis led to this inflated estimate, and it’s likely too high by an order of magnitude.

For a quick gut check, let’s look to an industry leader, Daimler Truck North America, which has provided the only complete analysis of commercial truck infrastructure investment that will be needed in the United States. This work is in the company’s public comments on the Environmental Protection Agency (EPA)’s Phase 3 greenhouse gas emission standards proposal, and Daimler estimated an upper-bound cost for charging infrastructure of $66 billion to support 1.425 million electric trucks by 2032. The equivalent infrastructure cost per truck works out to $46,316. Meanwhile, the CFC report put the cost per truck at a level three times higher. What explains the large difference?

We identify some critical deficiencies in the CFC study. The CFC analysis imagines that all infrastructure is deployed everywhere, all at once; it assumes no change in costs over time; and it assumes twice the charging capacity needed for certain electric truck loads. In the world imagined by the CFC analysis, businesses do not plan, innovate, form partnerships, compete on cost, learn from experience, or grow profitable through effective charger utilization and economies of scale. This is not a realistic representation of how the energy transition will unfold and it produces unrealistic cost estimates.

Daimler, which knows a thing or two about running a profitable business, took a different approach. Its analysis used historical data from the company’s own projects to derive behind-the-meter infrastructure costs per kilowatt of installed power. The analysis also used a study from Boston Consulting Group for estimates of both optimized and worst-case front-of-the-meter utility grid capacity upgrades. Daimler assumed these costs fall over time as the industry learns how to connect to the grid more efficiently.

The CFC analysis has the additional shortcoming of excluding the most-efficient and least-cost pathways of supplying power to vehicles, including low-cost solutions that use existing grid capacity or deploy managed charging. Any serious analysis would illustrate how to deliver the greatest amount of infrastructure at the lowest cost. And it would present annual investments needed to deliver the infrastructure over a set time horizon. By avoiding this approach, the CFC analysis provides no information that can be acted on by policymakers in the real world.

What we know

We have a pretty good idea of how much charging infrastructure the U.S. commercial vehicle fleet needs. The national target for commercial trucks and buses is 30% zero-emission vehicles for new sales in 2030 and 100% in 2040. Accordingly, the Joint Office of Energy and Transportation and EPA just last week released the National Zero Emission Freight Corridor Strategy, which helps to prioritize where and when to deploy zero-emission vehicle infrastructure to meet these targets. Additionally, Inflation Reduction Act incentives support the deployment of as many as 1.1 million class 4-8 zero-emission vehicles through 2030, which would represent about 10% of the stock of these vehicles. The ICCT estimated that nearly 600,000 chargers providing 69,000 MW of nameplate capacity would serve them, although the stock of chargers needs to continue to grow beyond 2030.

Moreover, CALSTART has shown what a phased approach to deployment looks like. And the Electric Power Research Institute has mapped the daily energy needs of electric trucks using data from truck manufacturers down to the quarter mile across the entire United States.

What would be useful

EPA will soon finalize Phase 3 greenhouse gas standards for heavy-duty vehicles and the ICCT has shown how its requirements are achievable for manufacturers. But more policy actions to fully decarbonize the commercial truck fleet will follow the rule, and crafting effective strategies will require serious estimates of infrastructure cost, not weak analysis that distracts from constructive discussion. Now is the time to focus intently on the work that moves us toward our decarbonization goals.

Author

Ray Minjares
Heavy-Duty Vehicles Program Director and San Francisco Managing Director

Related Publications

NEAR-TERM INFRASTRUCTURE DEPLOYMENT TO SUPPORT ZERO-EMISSION MEDIUM- AND HEAVY-DUTY VEHICLES IN THE UNITED STATES

Assesses the near-term charging and refueling infrastructure needs for Class 4-8 vehicles at the national and regional level.

The post Electrifying all U.S. trucks is not just feasible—it’ll cost less than some might have you think appeared first on International Council on Clean Transportation.

]]>
Cabotagem no Brasil em 2021 https://theicct.org/publication/cabotagem-no-brasil-em-2021-mar24/ Wed, 27 Mar 2024 04:18:12 +0000 https://theicct.org/?post_type=publication&p=39948 Destaca as principais commodities transportadas por cabotagem no Brasil e as entidades envolvidas no setor para explorar o potencial de sincronizar esforços de descarbonização e facilitar a realização das emissões líquidas zero nacionais.

The post Cabotagem no Brasil em 2021 appeared first on International Council on Clean Transportation.

]]>

Como muitos países, o Brasil restringe a navegação entre portos domésticos à entidades nacionais. Apenas empresas brasileiras de navegação (EBNs) podem se envolver na cabotagem.1 Em meados de 2023, a Agência Nacional de Transportes Aquaviários (ANTAQ) contabilizou 49 empresas registradas como EBNs que operavam navios na cabotagem.2 Aqui destacamos aspectos do mercado em 2021, quando os registros informam que havia 185 navios na frota de cabotagem do Brasil; estes eram principalmente barcaças, manuseadores de espias (embarcações que operam no descarregamento do petróleo das instalações de produção e armazenamento para os navios petroleiros e destes para as monoboias), porta-contêineres e navios-tanque. Cerca de 60% da capacidade total de transporte estava associada à indústria de petróleo e gás. Para todos os segmentos, algumas empresas detinham a maior parte da frota e das operações.

1Lei nº 9.432, de 8 de janeiro de 1997, https://www.planalto.gov.br/ccivil_03/leis/l9432.htm.

2 Ver detalhes das fontes de dados no final deste documento.

.

Tonelagem de 2011 a 2021

Os granéis líquidos e gasosos representaram cerca de 77% da tonelagem total de cabotagem no Brasil entre 2011 e 2021, ao passo que os granéis sólidos totalizaram cerca de 12% da tonelagem, a carga conteinerizada, 7%, e a carga geral, 3%. Nesse período, a tonelagem de granéis líquidos e gasosos cresceu 53%; a tonelagem de granéis sólidos, 7%; e a tonelagem de carga geral, 10%. A tonelagem de carga conteinerizada foi a que mais aumentou, 230%.

Granéis líquidos e gasosos

Do total de granéis líquidos e gasosos transportados, 98,6% eram combustíveis minerais, óleos minerais e produtos de sua destilação. O restante eram produtos químicos orgânicos (0,6%), produtos químicos e substâncias inorgânicos (0,4%), e bebidas, licores e vinagre (0,2%). A maior parte provinha de plataformas offshore de extração de petróleo na Zona Econômica Exclusiva (ZEE) brasileira, e os principais destinos eram os estados de Rio de Janeiro e São Paulo, na Região Sudeste, que abrigam grandes refinarias de petróleo.3 Dez EBNs possuíam navios para transporte de granéis líquidos e gasosos, sendo que a Petrobras Transporte S.A.—Transpetro detinha 68% da frota (26 navios) e 93% da capacidade total de transporte nesse segmento. A Empresa de Navegação Elcano S.A. detinha 16% da frota (seis navios) e 3% da capacidade total, enquanto a Flumar Transportes de Químicos e Gases Ltda. detinha 5% da frota (dois navios) e 3% da capacidade total. Outras empresas tinham menos de 1%.

3 Empresa de Pesquisa Energética, Balanço Energético Nacional 2022: Ano Base 2021 [Brazilian Energy Balance 2022: Year 2021] (Rio de Janeiro, 2022), https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/topico-638/BEN2022.pdf.

Granéis sólidos

A cabotagem de granéis sólidos, fortemente ligada ao setor da mineração, teve como principais produtos minérios (91% do total de toneladas transportadas), sal (6%) e combustíveis minerais sólidos (1%). O transporte de granéis sólidos por cabotagem está concentrado no norte do Brasil, carregando principalmente bauxita, o terceiro recurso natural mais abundante no país.

Quatro empresas atuavam na cabotagem de granéis sólidos: a Elcano S.A detinha 50% da frota (quatro navios) e 56% da capacidade total de transporte; a Lyra Navegação Marítima detinha 25% da frota (dois navios) e 10% da capacidade de transporte; a Hidrovias do Brasil detinha 13% da frota (um navio) e 23% da capacidade total de transporte; e a Norsul detinha 13% da frota (um navio) e 10% da capacidade de transporte. Como o transporte de bauxita é baseado em contratos de longo prazo e em uma frota específica, há pouca concorrência para as EBNs que operam nesse mercado.

Carga conteinerizada

Três EBNs, cada uma com seis navios registrados, atuavam nesse segmento e colaboravam para oferecer múltiplos serviços: Aliança Navegação e Logística, Log-In Logística Intermodal e Mercosul Line. A Aliança detinha 44% da capacidade de transporte, seguida pela Log-In (30%) e pela Mercosul Line (26%). Todas são subsidiárias de corporações internacionais. A Mediterranean Shipping Company (MSC) detém participação majoritária na Log-in Logística Intermodal, a Aliança faz parte da AP Moller – Maersk, e a Mercosul Line integra o Grupo CMA CGM. Essas EBNs oferecem operações feeder que transferem cargas estrangeiras para importação ou exportação, parte importante dos serviços de cabotagem. Seis produtos representaram 51% do total de toneladas de carga conteinerizada relacionada à cabotagem; somados a outros 14 produtos, eles representaram 80% do total. O transporte de cargas conteinerizadas está mais distribuído pelo Brasil que o dos demais tipos de carga. Os principais pontos de origem e destino estão em todas as regiões ao longo da costa.

Carga geral

Desde 2011, a participação da carga geral na tonelagem total de cabotagem no Brasil vem diminuindo constantemente. Dois itens representam mais de 90% da cabotagem de carga geral: produtos siderúrgicos (70%) e celulose (22%), principal matéria-prima para a fabricação de papel. Produtos florestais, como madeira e carvão, são o terceiro item mais comum, mas representam apenas 3% do total de toneladas transportadas. Sete navios (de um total de dez) e duas EBNs responderam por 99% da capacidade de transporte: a Tranship Tranportes Marítimos Ltda. detinha cinco navios e 24% da capacidade de transporte, enquanto a Norsul possuía dois navios e 75% da capacidade de transporte. As principais origens e destinos da cabotagem de carga geral estão associadas a produtos siderúrgicos transportados do Espírito Santo (Região Sudeste) para Santa Catarina (Região Sul); produtos florestais e celulose transportados da Bahia (Nordeste) para o Espírito Santo (Sudeste); e produtos siderúrgicos do Ceará (Nordeste) para São Paulo (Sudeste).

Investimento em descarbonização

O programa BR do Mar, incorporado na Lei nº 14.301/2022, atualizou a legislação para aumentar a oferta e qualidade dos serviços de cabotagem no Brasil bem como promover a competitividade das EBNs, especialmente no segmento de cargas conteinerizadas.4 Além disso, a empresa que possui e opera a maior parte das embarcações em atuação na cabotagem no Brasil, a Transpetro, pretende reduzir em 11% as emissões de seus navios e investir R$ 64 milhões em esforços de descarbonização até 2027.5 Entre seus projetos planejados, a empresa lista revestimentos de alta tecnologia no casco dos navios para prevenir incrustações por organismos marinhos (reduzindo assim o consumo de combustível e as emissões de gases de efeito estufa); o emprego de algoritmos avançados para identificar as rotas de navegação mais eficientes; a otimização da combustão do motor principal; e o uso de misturas de biocombustíveis.6 Ademais, as principais companhias internacionais de transporte de contêineres que controlam ou possuem empresas em operação na cabotagem no Brasil divulgaram metas de sustentabilidade. Esses objetivos incluem a descarbonização de suas cadeias de abastecimento globais. A Tabela 1 exibe as metas de descarbonização divulgadas pelas empresas.

Tabela 1. Metas de descarbonização das principais empresas internacionais de transporte de contêineres e suas subsidiárias brasileiras.

Corporação internacional

EBN subsidiária

Metas de descarbonização relacionadas ao transporte marítimo internacional

Mediterranean Shipping Company (MSC)

Log-In

• Atuar ao longo da cadeia de valor da MSC para promover os investimentos necessários ao alcance da neutralidade de carbono em todas as operações, desenvolver soluções de apoio logístico e focar na eficiência energética. 

•Trabalhar com as partes interessadas para promover o uso de combustíveis alternativos, incluindo a infraestrutura e os sistemas de distribuição necessários.

AP Moller – Maersk

Aliança

Meta de descarbonização para 2030 em conformidade com a estratégia de 1,5º C da Science Based Targets Initiative (SBTi) para obter reduções absolutas de emissões entre 35% e 50% a partir da linha de base de 2020. 

•Meta de atingir a neutralidade de carbono até 2040 em todos os âmbitos e negócios.

Grupo CMA CGM

Mercosul Line

• Em seu relatório de Responsabilidade Social Empresarial de 2022, a empresa afirmou o objetivo de alcançar a neutralidade climática para a Mercosul Line até 2050, tendo pelo menos 10% de combustíveis alternativos em sua matriz energética até 2023 e atingindo 100% de eletricidade renovável em armazéns logísticos até 2025. 

•Buscar iniciativas que incluam usar combustíveis alternativos em navios e projetar embarcações com maior eficiência energética.

Como a frota de cabotagem do Brasil transporta principalmente materiais para a indústria de petróleo e gás, as estratégias para descarbonizar o transporte marítimo nacional exigirão a participação e o apoio desse setor. Uma análise recente mostrou que navios de abastecimento e porta-contêineres são as classes de embarcações responsáveis pela maior parte das emissões na ZEE brasileira.7 Ademais, o envolvimento das empresas que operam no segmento de navios de abastecimento e porta-contêineres será crucial para a implementação de medidas nacionais de descarbonização.

4 Lei nº 14.301, de 7 de janeiro de 2022, https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/lei/l14301.htm.
5 Transpetro, “Transpetro investe em Eficiência Energética e Descarbonização da sua Frota,” news release, 23 ago. 2023, https://transpetro.com.br/transpetro-institucional/noticias/transpetro-investe-em-eficiencia-energetica-e-descarbonizacao-da-sua-frota.htm.
6 Transpetro, Relatório de sustentabilidade 2022, https://sustentabilidade.petrobras.com.br.
7 Francielle Carvalho, Recommendations to Develop a Brazilian Maritime National Action Plan (Washington, DC: International Council on Clean Transportation, 2023), https://theicct.org/publication/recommendation-to-develop-a-brazilian-maritime-national-action-plan-aug23/.

Data sources and methodology

As informações apresentadas nas figuras foram obtidas nos bancos de dados da ANTAQ. Essa agência é responsável por regular, supervisionar e fiscalizar as atividades de prestação de serviços de transporte aquaviário e de exploração da infraestrutura portuária e aquaviária. Duas bases de dados da ANTAQ foram consultadas em abril e maio de 2023: Estatístico Aquaviário e Navegação Marítima – Frota Geral – Analítica.

Os sites das empresas de navegação também foram consultados, mas, quando houve divergência entre as bases de dados da ANTAQ e os relatórios das empresas, priorizaram-se os dados da ANTAQ. Por exemplo, existem diferenças entre os dados da frota de porta-contêineres nas bases da ANTAQ e as informações fornecidas pelas três EBNs em seus websites. Para a frota de carga geral, também identificamos diferenças entre os dados da ANTAQ e os das empresas. A base da ANTAQ contém informações sobre embarcações de carga geral que se misturam com barcaças que podem não estar operando no setor de carga geral. Por exemplo, embora a frota da Tranship esteja incluída na base de dados de carga geral da ANTAQ, a empresa atua mais no setor de petróleo e gás com barcaças de convés aberto.8 Os dados da ANTAQ indicam que as empresas do segmento de carga geral operam com barcaças de convés aberto destinadas ao transporte de cargas especiais e não de carga geral; algumas dessas barcaças estão associadas à indústria de petróleo e gás. O site da Norsul informa que a empresa atua no segmento de carga geral com uma frota de barcaças e rebocadores destinados ao transporte de celulose e produtos siderúrgicos.9 Assim, para assegurar a consistência com os demais segmentos de transporte de cabotagem apresentados nesta análise, todos os dados apresentados nas figuras foram obtidos na base da ANTAQ.

A propriedade das EBNs foi obtida das seguintes fontes:

  • Michele Labrut, “Log-In Logistica Accept MSC Takeover Offer,” Seatrade Maritime News, 23 dez. 2021, https://www.seatrade-maritime.com/ containers/log-logistica-accept-msc-takeover-offer.
  • “Aliança—A Maersk Company,” acesso em jun. 2023, https://www.alianca.com.br/a-alianca.
  • “Especialistas em Cabotagem e Logística,” Mercosul Line, acesso em jun. 2023, https://www.mercosul-line.com.br/.

 

8 “Frota,” Tranship, acesso em abr. 2023, http://www.tstranship.com.br/frota.html

9 “Navegação – Cabotagem e Longo Curso,” Norsul, acesso em jun. 2023, https://www.norsul.com/servicos/navegacao/.

The post Cabotagem no Brasil em 2021 appeared first on International Council on Clean Transportation.

]]>